f: \(A \times B → B \times A\) is defined as f(a, b) = (b, a).
Let \((a_1,b_1)\), \((a_2,b_2)\) \(∈ A\times B\) such that \(f(a_1,b_1)=f(a_2,b_2)\).
\(⇒ (b_1,a_1)=(b_2,a_2)\)
\(⇒ b_1=b_2 \text{ and } a_1=a_2\)
\(⇒ (a_1,b_1)=(a_2,b_2)\)
∴ f is one-one.
Now, let (b, a) ∈ B × A be any element.
Then, there exists (a, b) ∈A × B such that f(a, b) = (b, a). [By definition of f]
∴ f is onto.
Hence, f is bijective.
A school is organizing a debate competition with participants as speakers and judges. $ S = \{S_1, S_2, S_3, S_4\} $ where $ S = \{S_1, S_2, S_3, S_4\} $ represents the set of speakers. The judges are represented by the set: $ J = \{J_1, J_2, J_3\} $ where $ J = \{J_1, J_2, J_3\} $ represents the set of judges. Each speaker can be assigned only one judge. Let $ R $ be a relation from set $ S $ to $ J $ defined as: $ R = \{(x, y) : \text{speaker } x \text{ is judged by judge } y, x \in S, y \in J\} $.
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
A function is said to be one to one function when f: A → B is One to One if for each element of A there is a distinct element of B.
A function which maps two or more elements of A to the same element of set B is said to be many to one function. Two or more elements of A have the same image in B.
If there exists a function for which every element of set B there is (are) pre-image(s) in set A, it is Onto Function.
A function, f is One – One and Onto or Bijective if the function f is both One to One and Onto function.
Read More: Types of Functions