7
10
9
8
\(a^2 + ab + a = 14\) — (1)
\(b^2 + ab + b = 28\) ------(2)
Eq 2 – Eq 1
\(b^2 - a^2 + b – a = 14\)
\((b-a)(b+a) + (b-a) = 14\)
\((b-a)(b+a+1) = 14\)
Now, \(14 = 1×14\ or \ 2×7\)
But \(a < 4\) since \(a^2 < 14\)
And \(b < 5\) since \(b^2 + b < 28\)
So,\( a+b+1 < 4+5+1 = 10\)
So, \(a+b+1 = 7\) and \(b-a = 2\)
Solving, \(b = 4\) and \(a = 2\)
So, \(2a+b = 2(2) + 4 = 8\)