To solve the given problem, we need to evaluate each statement about vectors \(\overrightarrow a = 4\hat i -\hat j + 3\hat k\) and \(\overrightarrow b = -2\hat i + \hat j-2\hat k\). Let's analyze each option step by step:
(A) To check if \(\overrightarrow a\) is a unit vector, calculate its magnitude: \[\|\overrightarrow a\| = \sqrt{4^2 + (-1)^2 + 3^2} = \sqrt{16 + 1 + 9} = \sqrt{26}\]. Since \(\sqrt{26} \ne 1\), \(\overrightarrow a\) is not a unit vector.
(B) To compute \(\overrightarrow a \times \overrightarrow b\), use:
\[ \overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \hat i & \hat j & \hat k \\ 4 & -1 & 3 \\ -2 & 1 & -2 \end{vmatrix} = \hat i(1\cdot3 - 1\cdot(-2)) - \hat j(4\cdot3 - 3\cdot(-2)) + \hat k(4\cdot1 - (-1)\cdot(-2)) \]
\[ = \hat i(3 + 2) - \hat j(12 + 6) + \hat k(4 - 2) \]
\[ = \hat i(5) - \hat j(18) + \hat k(2) = 5\hat i - 18\hat j + 2\hat k \]
Since this doesn't match \(-\hat i + 2\hat j + 2\hat k\), there seems to be a mistake in calculation.
Re-evaluating gives: \(-\hat i + 2\hat j + 2\hat k\) from rearranging terms correctly. Thus, option (B) is correct. Let's verify the others.
(C) Vectors are parallel if one is a scalar multiple of the other. Check:
If \(-2\hat i + \hat j - 2\hat k = k(4\hat i - \hat j + 3\hat k)\), the system of equations: \(-2 = 4k,\ 1 = -k,\ -2 = 3k\) results in inconsistent k-values. \(\overrightarrow a\) and \(\overrightarrow b\) are not parallel.
(D) They are neither parallel nor perpendicular. Their dot product \((4)(-2) + (-1)(1) + (3)(-2) = -8 -1 - 6 = -15 \ne 0\). No 90-degree angle between them.
Combining results, correct option: (B) and (D) Only.