Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
A 4 kg mass is suspended as shown in the figure. All pulleys are frictionless and spring constant \( K \) is \( 8 \times 10^3 \) Nm\(^{-1}\). The extension in spring is ( \( g = 10 \) ms\(^{-2}\) )
The range of the real valued function \( f(x) =\) \(\sin^{-1} \left( \frac{1 + x^2}{2x} \right)\) \(+ \cos^{-1} \left( \frac{2x}{1 + x^2} \right)\) is: