John's speed is \(6 \text{ km/h} = \frac{6000}{3600} = \frac{5}{3} \text{ m/s} \)
Mary's speed is \(7.5 \text{ km/h} = \frac{7500}{3600} = \frac{25}{12} \text{ m/s} \)
Given: \( x + y = 325 \) .... (1)
\[ \text{Time} = \frac{9x}{\frac{5}{3}} = \frac{27x}{5} \text{ seconds} \]
\[ \text{Time} = \frac{5y}{\frac{25}{12}} = \frac{60y}{25} = \frac{12y}{5} \text{ seconds} \]
\[ \frac{27x}{5} = \frac{12y}{5} \Rightarrow 27x = 12y \Rightarrow x = \frac{4}{9}y \]
\[ x + y = 325 \Rightarrow \frac{4}{9}y + y = 325 \Rightarrow \frac{13y}{9} = 325 \Rightarrow y = 225 \Rightarrow x = 100 \]
\[ \text{Time} = \frac{x}{\text{Mary's speed}} = \frac{100}{\frac{25}{12}} = \frac{100 \times 12}{25} = 48 \text{ seconds} \]
Mary takes 48 seconds to run one round of Track A.
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: