Step 1: Differentiate \( f(x) \) to find critical points
The derivative is: \[ f'(x) = 4x^3 - 124x + a. \] Since \( f(x) \) attains a local maximum at \( x = 1 \), we have: \[ f'(1) = 4(1)^3 - 124(1) + a = 0. \] Solve for \( a \): \[ 4 - 124 + a = 0 \implies a = 120. \] Step 2: Find critical points
Substitute \( a = 120 \) into \( f'(x) \): \[ f'(x) = 4x^3 - 124x + 120. \] Factorize: \[ f'(x) = 4(x - 1)(x^2 + x - 30). \] Further factorize: \[ f'(x) = 4(x - 1)(x - 5)(x + 6). \] The critical points are \( x = -6, 1, 5 \).
Step 3: Determine the nature of critical points using \( f''(x) \)
The second derivative is: \[ f''(x) = 12x^2 - 124. \] Evaluate \( f''(x) \) at each critical point: \[ f''(-6) = 12(-6)^2 - 124 = 432 - 124 = 308 > 0 \quad (\text{local minimum at } x = -6). \] \[ f''(1) = 12(1)^2 - 124 = 12 - 124 = -112 < 0 \quad (\text{local maximum at } x = 1). \] \[ f''(5) = 12(5)^2 - 124 = 300 - 124 = 176 > 0 \quad (\text{local minimum at } x = 5). \]
Conclusion:
The function \( f(x) \) attains: \[ \text{Local maximum at } x = 1, \quad \text{local minima at } x = -6, 5. \]
List-I | List-II |
(A) Absolute maximum value | (I) 3 |
(B) Absolute minimum value | (II) 0 |
(C) Point of maxima | (III) -5 |
(D) Point of minima | (IV) 4 |