We are given:
\[
P(A|B) = \frac{1}{2}, \quad P(B|A) = \frac{2}{3}.
\]
We know that:
\[
P(A|B) = \frac{P(A \cap B)}{P(B)}, \quad P(B|A) = \frac{P(A \cap B)}{P(A)}.
\]
Let \( P(A \cap B) = p \), \( P(A) = p_1 \), and \( P(B) = p_2 \). Then:
From \( P(A|B) = \frac{1}{2} \), we have:
\[
\frac{p}{p_2} = \frac{1}{2} \quad \Rightarrow \quad p = \frac{p_2}{2}.
\]
From \( P(B|A) = \frac{2}{3} \), we have:
\[
\frac{p}{p_1} = \frac{2}{3} \quad \Rightarrow \quad p = \frac{2p_1}{3}.
\]
Equating the two expressions for \( p \), we get:
\[
\frac{p_2}{2} = \frac{2p_1}{3} \quad \Rightarrow \quad 3p_2 = 4p_1 \quad \Rightarrow \quad p_2 = \frac{4p_1}{3}.
\]
Now, we use Bayes' Theorem:
\[
P(A|B) = \frac{P(A \cap B)}{P(B)} \quad \Rightarrow \quad \frac{p}{p_2} = \frac{1}{3}.
\]
So, the correct answer is \( P(B) = \frac{1}{3} \).