Reason. Use the chain rule in reverse (substitution).
Let \(u=\dfrac{3x}{4}\Rightarrow du=\dfrac{3}{4}dx\Rightarrow dx=\dfrac{4}{3}du\). Then
\[
\int \sin\!\left(\tfrac{3x}{4}\right)\,dx=\int \sin u\cdot \frac{4}{3}\,du
=\frac{4}{3}\int \sin u\,du
=\frac{4}{3}(-\cos u)+k
=-\frac{4}{3}\cos\!\left(\tfrac{3x}{4}\right)+k.
\]
Thus the antiderivative is \(k-\dfrac{4}{3}\cos\!\left(\dfrac{3x}{4}\right)\).