Question:

\(\displaystyle \int \sec^{2}\!\left(\frac{17x}{23}\right)\,dx=\) ?

Show Hint

Because \((\tan u)'=\sec^2 u\), the antiderivative is \(\tan u\) divided by \(u'\).
  • \(k+\dfrac{17}{23}\tan\!\left(\dfrac{17x}{23}\right)\)
  • \(k-\dfrac{17}{23}\tan\!\left(\dfrac{17x}{23}\right)\)
  • \(k+\dfrac{23}{17}\tan\!\left(\dfrac{17x}{23}\right)\)
  • \(k-\dfrac{23}{17}\tan\!\left(\dfrac{17x}{23}\right)\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

\(\displaystyle \int \sec^{2}(ax)\,dx=\frac{1}{a}\tan(ax)+C\). With \(a=\dfrac{17}{23}\), \[ \int \sec^{2}\!\left(\tfrac{17x}{23}\right)\!dx =\frac{1}{17/23}\tan\!\left(\tfrac{17x}{23}\right)+k =\frac{23}{17}\tan\!\left(\tfrac{17x}{23}\right)+k. \]
Was this answer helpful?
0
0