Let \(f(x)=\ln\!\left(\dfrac{3+x}{3-x}\right)\). Check symmetry:
\[
f(-x)=\ln\!\left(\frac{3-x}{3+x}\right)=-\ln\!\left(\frac{3+x}{3-x}\right)=-f(x).
\]
So \(f\) is an odd function. The integral of an odd function over a symmetric interval \([-a,a]\) is \(0\). Hence the value is \(0\).