Step 1: Simplify the integrand
$\frac{\cos x - \sin x}{\sin 2x} = \frac{\cos x - \sin x}{2 \sin x \cos x}$. Let $u = \tan x$, $du = \sec^2 x \, dx$, $dx = \frac{du}{1 + u^2}$, $\sin x = \frac{u}{\sqrt{1 + u^2}}$, $\cos x = \frac{1}{\sqrt{1 + u^2}}$. Limits: $x = \frac{\pi}{4}$, $u = 1$; $x = \frac{\pi}{2}$, $u \to \infty$. The integral becomes $\int_1^\infty \frac{\frac{1}{\sqrt{1 + u^2}} - \frac{u}{\sqrt{1 + u^2}}}{2 \cdot \frac{u}{\sqrt{1 + u^2}} \cdot \frac{1}{\sqrt{1 + u^2}}} \cdot \frac{du}{1 + u^2} = \int_1^\infty \frac{1 - u}{2u} \cdot \frac{1}{1 + u^2} \, du$.
Step 2: Integrate
$\frac{1 - u}{2u (1 + u^2)} = \frac{A}{u} + \frac{B}{1 + u^2}$, solve to get $A = \frac{1}{2}$, $B = -1$. Integral: $\frac{1}{2} \log u - \tan^{-1} u \big|_1^\infty = \left( \frac{1}{2} \log u - \tan^{-1} u \right) \big|_1^\infty = \left( 0 - \frac{\pi}{2} \right) - \left( \frac{1}{2} \log 1 - \frac{\pi}{4} \right) = -\frac{\pi}{4}$.
Step 3: Match with options
The given answer involves logarithms; recompute using direct substitution or numerical evaluation of the result to match $\frac{1}{2} \log \left[ \frac{(3 + 2\sqrt{2}) (2 - \sqrt{3})}{\sqrt{3}} \right]$.