Question:

\(\displaystyle \int e^{x}\!\left(\frac{1}{x}-\frac{1}{x^{2}}\right)\,dx=\) ?

Show Hint

A pattern like $e^x\!\left(\frac{1}{x}-\frac{1}{x^{2}}\right)$ screams "derivative of $\frac{e^x}{x}$".
  • \(\dfrac{e^{x}}{x}+k\)
  • \(-x\,e^{x}+k\)
  • \(k-\dfrac{e^{x}}{x}\)
  • \(k-\dfrac{e^{x}}{x^{2}}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Differentiate \(\dfrac{e^{x}}{x}\) using quotient rule: \[ \left(\frac{e^{x}}{x}\right)'=\frac{x e^{x}-e^{x}}{x^{2}}=e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right). \] Matches the integrand, so the antiderivative is \(\dfrac{e^{x}}{x}+k\).
Was this answer helpful?
0
0