Question:

\(\displaystyle \int \cos\!\left(\frac{7x}{9}\right)\,dx=\) ?

Show Hint

Differentiate to check: \(\dfrac{d}{dx}\big(\tfrac{1}{a}\sin(ax)\big)=\cos(ax)\).
  • \(k+\sin\!\left(\dfrac{7x}{9}\right)\)
  • \(\dfrac{7}{9}+\sin\!\left(\dfrac{7x}{9}\right)+k\)
  • \(\dfrac{9}{7}\sin\!\left(\dfrac{7x}{9}\right)+k\)
  • \(k+\cos\!\left(\dfrac{7x}{9}\right)\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

\(\displaystyle \int \cos(ax)\,dx=\frac{1}{a}\sin(ax)+C\). Here \(a=\dfrac{7}{9}\), hence \[ \int \cos\!\left(\tfrac{7x}{9}\right)dx=\frac{1}{7/9}\sin\!\left(\tfrac{7x}{9}\right)+k =\frac{9}{7}\sin\!\left(\tfrac{7x}{9}\right)+k. \]
Was this answer helpful?
0
0