Step 1: Compute expected time of each activity using PERT formula.
\[
t_e = \frac{a + 4m + b}{6}
\]
\[
\begin{aligned}
t_A &= \frac{4 + 4(15) + 20}{6} = 14.0
t_B &= \frac{4 + 4(8) + 12}{6} = 8.0
t_C &= \frac{6 + 4(11) + 16}{6} = 11.0
t_D &= \frac{12 + 4(13) + 20}{6} = 14.0
t_E &= \frac{3 + 4(8) + 13}{6} = 8.0
t_F &= \frac{25 + 4(35) + 45}{6} = 35.0
\end{aligned}
\]
Step 2: Determine all possible project paths.
Using predecessor–successor relations:
- Path 1: \(1 \rightarrow 2 \rightarrow 3 \rightarrow 4\)
Activities: A → C → D
\[
T_1 = 14 + 11 + 14 = 39\ \text{weeks}
\]
- Path 2: \(1 \rightarrow 3 \rightarrow 4\)
Activities: B → D
\[
T_2 = 8 + 14 = 22\ \text{weeks}
\]
- Path 3: \(1 \rightarrow 4\)
Activities: F
\[
T_3 = 35\ \text{weeks}
\]
- Path 4: \(1 \rightarrow 2 \rightarrow 4\)
Activities: A → E
\[
T_4 = 14 + 8 = 22\ \text{weeks}
\]
Step 3: Critical path is the longest-duration path.
\[
T_{\max} = \max(39,22,35,22) = 39\ \text{weeks}
\]
\[
\boxed{39}
\]