In Young’s double slit experimental set-up, the intensity of the central maximum is \( I_0 \). Calculate the intensity at a point where the path difference between two interfering waves is \( \frac{\lambda}{3} \).
The intensity in Young’s double slit experiment is given by:
\[ I = I_0 \cos^2\left( \frac{\pi \Delta x}{\lambda} \right) \]
Where:
- \( I_0 \) is the intensity of the central maximum,
- \( \Delta x \) is the path difference between the two waves,
- \( \lambda \) is the wavelength of the light.
Given: \( \Delta x = \frac{\lambda}{3} \), we substitute into the equation:
\[ I = I_0 \cos^2\left( \frac{\pi}{3} \right) \]
Since \( \cos\left( \frac{\pi}{3} \right) = \frac{1}{2} \), we get:
\[ I = I_0 \left( \frac{1}{2} \right)^2 = \frac{I_0}{4} \]
Final Answer:
The intensity at the point where the path difference is \( \frac{\lambda}{3} \) is: \[ I = \frac{I_0}{4} \]
A slanted object AB is placed on one side of convex lens as shown in the diagram. The image is formed on the opposite side. Angle made by the image with principal axis is: 