In Young's double slit experiment, for amplitudes \( a_1 \) and \( a_2 \), intensity \( I \propto a^2 \).
\[
I_{\text{max}} = (a_1 + a_2)^2, \quad I_{\text{min}} = (a_1 - a_2)^2.
\]
\[
\frac{I_{\text{max}}}{I_{\text{min}}} = \frac{(a_1 + a_2)^2}{(a_1 - a_2)^2} = 16 \quad \Rightarrow \quad \frac{a_1 + a_2}{a_1 - a_2} = 4.
\]
Let \( r = \frac{a_1}{a_2} \). Then:
\[
\frac{a_1 + a_2}{a_1 - a_2} = \frac{r + 1}{r - 1} = 4.
\]
\[
r + 1 = 4(r - 1) \quad \Rightarrow \quad r + 1 = 4r - 4 \quad \Rightarrow \quad 5 = 3r \quad \Rightarrow \quad r = \frac{5}{3}.
\]
Answer: 5 : 3.