Step 1: Use angular fringe width formula.
Angular width of fringe is given by:
\[
\theta = \frac{\lambda}{d}
\]
Step 2: Convert given data to SI units.
\[
\lambda = 6000\,\text{\AA} = 6000 \times 10^{-10} = 6\times 10^{-7}\,m
\]
\[
\theta = 1^\circ = \frac{\pi}{180} \approx 0.01745\ \text{rad}
\]
Step 3: Find slit separation \(d\).
\[
d = \frac{\lambda}{\theta}
= \frac{6\times 10^{-7}}{0.01745}
\approx 3.44\times 10^{-5}\,m
\]
Step 4: Convert into mm.
\[
3.44\times 10^{-5}\,m = 3.44\times 10^{-2}\,mm \approx 0.03\,mm
\]
Final Answer:
\[
\boxed{0.03\ \text{mm}}
\]