To find where bright fringes coincide, calculate LCM of wavelengths:
\[
\lambda_1 = 3750\, \text{Å}, \quad \lambda_2 = 7500\, \text{Å}
\Rightarrow \text{LCM}(\lambda_1, \lambda_2) = 7500\, \text{Å}
\]
Path difference for bright fringe is:
\[
\Delta y = \frac{n\lambda D}{d}
\Rightarrow \text{minimum common fringe: } n = 2 \text{ for } \lambda = 3750,\quad n = 1 \text{ for } 7500
\]
Let’s calculate:
\[
y = \frac{\lambda D}{d} = \frac{7500 \times 10^{-10} \cdot 4}{3 \times 10^{-3}} = \frac{3 \times 10^{-6}}{3 \times 10^{-3}} = 1 \times 10^{-3} = 1\, \text{mm}
\]