$\hspace25mm I=I_{max}cos^2 \big(\frac{\phi}{2}\big)$
$\therefore \hspace20mm \frac{I_{max}}{4}=I_{max}cos^2 \frac{\phi}{2}$
$\hspace20mm cos \frac{\phi}{2}=\frac{1}{2}$
or $\hspace20mm \frac{\phi}{2}=\frac{\pi}{3}$
$\therefore \hspace20mm \phi =\frac{2 \pi}{3}=\big(\frac{2 \pi}{\lambda}\big)\Delta x \hspace20mm$ ...(i)
where $\hspace10mm \Delta x=d \, sin \, \theta$
Substituting in E (i), we get
$\hspace25mm sin \, \theta=\frac{\lambda}{3d}$
or $\hspace 25mm \theta=sin^{-1}\big(\frac{\lambda}{3d}\big)$
$\therefore$ Correct answer is (c).