Step 1: Identify the Given Vectors Let the position vectors of the vertices be: \[ \mathbf{P} = 4\hat{i} + 3\hat{j} + 6\hat{k}, \quad \mathbf{Q} = 3\hat{i} + \hat{j} + 3\hat{k}, \quad \mathbf{R} = 3\hat{i} + \hat{j} + 3\hat{k} \] We need to find the position vector of the point where the angle bisector of \( \angle P \) meets the line segment \( QR \).
Step 2: Using the Angle Bisector Theorem By the angle bisector theorem, the point \( D \) dividing \( QR \) in the ratio \( PQ : PR \) lies on the line joining \( Q \) and \( R \). Let \( D \) be the point of intersection. By the angle bisector theorem: \[ \frac{QD}{DR} = \frac{PQ}{PR} \] From the given position vectors: \[ PQ = |\mathbf{Q} - \mathbf{P}| = |(3\hat{i} + \hat{j} + 3\hat{k}) - (4\hat{i} + 3\hat{j} + 6\hat{k})| = |(-\hat{i} - 2\hat{j} - 3\hat{k})| = \sqrt{(-1)^2 + (-2)^2 + (-3)^2} = \sqrt{14} \] \[ PR = |\mathbf{R} - \mathbf{P}| = |(3\hat{i} + \hat{j} + 3\hat{k}) - (4\hat{i} + 3\hat{j} + 6\hat{k})| = |(-\hat{i} - 2\hat{j} - 3\hat{k})| = \sqrt{14} \] Since \( PQ = PR \), the ratio is 1:1. Thus, the point \( D \) is the midpoint of \( QR \).
Step 3: Finding the Midpoint By the midpoint formula, \[ \mathbf{D} = \frac{\mathbf{Q} + \mathbf{R}}{2} \] \[ \mathbf{D} = \frac{(3\hat{i} + \hat{j} + 3\hat{k}) + (3\hat{i} + \hat{j} + 3\hat{k})}{2} \] \[ \mathbf{D} = \frac{(6\hat{i} + 2\hat{j} + 6\hat{k})}{2} \] \[ \mathbf{D} = 3\hat{i} + \hat{j} + 3\hat{k} \]
Step 4: Final Answer
Let \( \vec{p} \) and \( \vec{q} \) be two unit vectors and \( \alpha \) be the angle between them. Then \( (\vec{p} + \vec{q}) \) will be a unit vector for what value of \( \alpha \)?