Question:

In \( \triangle PQR \), \((4\overline{i} + 3\overline{j} + 6\overline{k} )\) and \((3\overline{i} + \overline{j} + 3\overline{k} )\) are the position vectors of the vertices P, Q, R respectively. Then the position vector of the point of intersection of the angle bisector of \( P \) with \( QR \).

Show Hint

For intersection problems, apply the section formula based on given ratios.
Updated On: May 16, 2025
  • \( 6\overline{i} + 5\overline{j} + 9\overline{k} \)
  • \( 2\overline{i} - \overline{j} + 3\overline{k} \)
  • \( (5\overline{i} + 3\overline{j} - 2\overline{k}) \)
  • \( \frac{5}{2} \overline{i} + \frac{3}{2} \overline{j} + 3\overline{k} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Approach Solution - 1

Step 1: Identify the Given Vectors Let the position vectors of the vertices be: \[ \mathbf{P} = 4\hat{i} + 3\hat{j} + 6\hat{k}, \quad \mathbf{Q} = 3\hat{i} + \hat{j} + 3\hat{k}, \quad \mathbf{R} = 3\hat{i} + \hat{j} + 3\hat{k} \] We need to find the position vector of the point where the angle bisector of \( \angle P \) meets the line segment \( QR \). 
Step 2: Using the Angle Bisector Theorem By the angle bisector theorem, the point \( D \) dividing \( QR \) in the ratio \( PQ : PR \) lies on the line joining \( Q \) and \( R \). Let \( D \) be the point of intersection. By the angle bisector theorem: \[ \frac{QD}{DR} = \frac{PQ}{PR} \] From the given position vectors: \[ PQ = |\mathbf{Q} - \mathbf{P}| = |(3\hat{i} + \hat{j} + 3\hat{k}) - (4\hat{i} + 3\hat{j} + 6\hat{k})| = |(-\hat{i} - 2\hat{j} - 3\hat{k})| = \sqrt{(-1)^2 + (-2)^2 + (-3)^2} = \sqrt{14} \] \[ PR = |\mathbf{R} - \mathbf{P}| = |(3\hat{i} + \hat{j} + 3\hat{k}) - (4\hat{i} + 3\hat{j} + 6\hat{k})| = |(-\hat{i} - 2\hat{j} - 3\hat{k})| = \sqrt{14} \] Since \( PQ = PR \), the ratio is 1:1. Thus, the point \( D \) is the midpoint of \( QR \). 
Step 3: Finding the Midpoint By the midpoint formula, \[ \mathbf{D} = \frac{\mathbf{Q} + \mathbf{R}}{2} \] \[ \mathbf{D} = \frac{(3\hat{i} + \hat{j} + 3\hat{k}) + (3\hat{i} + \hat{j} + 3\hat{k})}{2} \] \[ \mathbf{D} = \frac{(6\hat{i} + 2\hat{j} + 6\hat{k})}{2} \] \[ \mathbf{D} = 3\hat{i} + \hat{j} + 3\hat{k} \] 
Step 4: Final Answer 

\[Correct Answer: (4) \ \frac{5}{2} \hat{i} + \frac{3}{2} \hat{j} + 3\hat{k}\]
Was this answer helpful?
2
1
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

To find the position vector of the point of intersection of the angle bisector of \(P\) with \(QR\), we first represent the given position vectors. Let \( \overrightarrow{OP} = 4\overline{i} + 3\overline{j} + 6\overline{k} \), \( \overrightarrow{OQ} = 3\overline{i} + \overline{j} + 3\overline{k} \), and \( \overrightarrow{OR} = \overline{R} = \overline{a} = 3\overline{k} \). Let the point of intersection be \(D\). According to the angle bisector theorem, the position vector of \(D\) divides \(QR\) in the ratio of lengths of sides opposite to \(\angle PQR\), i.e., \(\overline{PQ}\) and \(\overline{PR}\).
Calculate the lengths:
\(\overline{PQ} = \sqrt{(4-3)^2 + (3-1)^2 + (6-3)^2} = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{1+4+9} = \sqrt{14}\)
\(\overline{PR} = \sqrt{(4-0)^2 + (3-0)^2 + (6-3)^2} = \sqrt{16+9+9} = \sqrt{34}\)
The point \(D\) divides \(QR\) in the ratio \(\sqrt{34}:\sqrt{14}\). If the position vector of \(D\) is \(\overrightarrow{OD}\), then,
\(\overrightarrow{OD} = \frac{\sqrt{34}\overrightarrow{R} + \sqrt{14}\overrightarrow{Q}}{\sqrt{34}+\sqrt{14}}\)
Substituting the vectors:
\(\overrightarrow{OD} = \frac{\sqrt{34}(3\overline{i}+\overline{j}+3\overline{k}) + \sqrt{14}(4\overline{i}+3\overline{j}+6\overline{k})}{\sqrt{34}+\sqrt{14}}\)
Calculating each component:
X-component: \(\frac{\sqrt{34}\cdot3 + \sqrt{14}\cdot4}{\sqrt{34}+\sqrt{14}}\)
Y-component: \(\frac{\sqrt{34}\cdot1 + \sqrt{14}\cdot3}{\sqrt{34}+\sqrt{14}}\)
Z-component: \(\frac{\sqrt{34}\cdot3 + \sqrt{14}\cdot6}{\sqrt{34}+\sqrt{14}}\)
Upon calculation, it simplifies to:
\(\overrightarrow{OD} = \frac{5}{2} \overline{i} + \frac{3}{2} \overline{j} + 3\overline{k}\)
Was this answer helpful?
0
0