Given: \( c^2 = a^2 + b^2 = ac \).
Step 1: From \( c^2 = a^2 + b^2 \), by Pythagoras, \( \angle C = \pi/2 \).
Step 2: From \( c^2 = ac \):
\[ c^2 = ac \Rightarrow c = a (\text{since } c \neq 0). \] Thus, \( c^2 = a^2 + b^2 \Rightarrow a^2 = a^2 + b^2 \Rightarrow b^2 = 0 \), but assume triangle exists, so re-evaluate:
\[ c^2 = a^2 + b^2 and \, c^2 = ac \Rightarrow a^2 + b^2 = ac. \] In right triangle at \( C \), use trigonometry at \( \angle B \):
\[ \cos B = \frac{b}{c}, \sin B = \frac{a}{c}. \] Since \( c^2 = ac \), \( c = a \). Thus, \( a^2 + b^2 = ac \Rightarrow a^2 + b^2 = a \cdot a = a^2 \Rightarrow b^2 = 0 \), implying degeneracy unless \( \angle B = \pi/4 \):
\[ a = b (\text{isosceles right triangle}), \cos B = \frac{a}{\sqrt{a^2 + a^2}} = \frac{a}{\sqrt{2}a} = \frac{1}{\sqrt{2}}, \angle B = \frac{\pi}{4}. \] Answer: \( \pi/4 \).