Step 1: Use the property of arithmetic progression and the sum of angles in a triangle.
Since \( A, B, C \) are in arithmetic progression, let the common difference be \( d \). Then \( A = B - d \) and \( C = B + d \).
The sum of the angles in a triangle is \( 180^\circ \):
\[
A + B + C = 180^\circ
\]
\[
(B - d) + B + (B + d) = 180^\circ
\]
\[
3B = 180^\circ \implies B = 60^\circ
\]
Thus, \( A + C = 180^\circ - B = 180^\circ - 60^\circ = 120^\circ \).
Step 2: Apply the Sine Rule and trigonometric identities.
Using the Sine Rule, we have \( \frac{a}{\sin A} = \frac{c}{\sin C} \), which implies \( \frac{c}{a} = \frac{\sin C}{\sin A} \) and \( \frac{a}{c} = \frac{\sin A}{\sin C} \).
Substitute these into the expression:
\[
\frac{c}{a} \sin 2A + \frac{a}{c} \sin 2C = \frac{\sin C}{\sin A} (2 \sin A \cos A) + \frac{\sin A}{\sin C} (2 \sin C \cos C)
\]
\[
= 2 \sin C \cos A + 2 \sin A \cos C
\]
Using the sine addition formula \( \sin(X + Y) = \sin X \cos Y + \cos X \sin Y \):
\[
= 2 (\sin C \cos A + \cos C \sin A) = 2 \sin(C + A)
\]
Since \( A + C = 120^\circ \), we have:
\[
2 \sin(C + A) = 2 \sin(120^\circ)
\]
We know that \( \sin(120^\circ) = \sin(180^\circ - 60^\circ) = \sin(60^\circ) = \frac{\sqrt{3}}{2} \).
Therefore,
\[
2 \sin(120^\circ) = 2 \times \frac{\sqrt{3}}{2} = \sqrt{3}
\]