Let \( A + B + C = 180^\circ \Rightarrow B = 180^\circ - A - C \) Given: \[ 2A + C = 300^\circ \Rightarrow A = \frac{300^\circ - C}{2} \] We use: \[ \frac{R}{r} = \frac{abc}{4rs} \cdot \frac{1}{r} = \frac{abc}{4r^2s} \] But simpler identity: \[ \frac{R}{r} = \frac{1}{4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}} = 8 \Rightarrow 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} = \frac{1}{8} \] Since angles are related, substitution leads to: \[ \sin\frac{C}{2} = \frac{1}{4} \]