Given:
Step 1: Calculate Path Difference (Δ)
For small angles (d << D), the path difference between light from the two slits reaching point P is:
\[ \Delta = \frac{d \cdot x}{D} \]
Step 2: Determine Phase Difference (φ)
The phase difference corresponding to this path difference is:
\[ \phi = \frac{2π}{λ} \cdot \Delta = \frac{2π}{λ} \cdot \frac{d \cdot x}{D} \]
Step 3: Calculate Resultant Intensity
For two coherent sources with intensity I₀ each, the resultant intensity is given by:
\[ I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \phi \]
Since I₁ = I₂ = I₀:
\[ I = 2I₀ + 2I₀ \cos \phi = 2I₀ (1 + \cos \phi) \]
Using the trigonometric identity \( 1 + \cos \phi = 2 \cos^2(\frac{\phi}{2}) \):
\[ I = 4I₀ \cos^2\left(\frac{\phi}{2}\right) \]
Substituting φ from Step 2:
\[ I = 4I₀ \cos^2\left(\frac{π d}{λ D} x\right) \]
Step 1: Path Difference ($\Delta p$)
$\Delta p \approx d \sin\theta$
Step 2: $\sin\theta \approx \tan\theta$
$\sin\theta \approx \tan\theta = \frac{x}{D}$
Step 3: Path Difference in terms of x, d, D
$\Delta p \approx \frac{xd}{D}$
Step 4: Phase Difference ($\phi$)
$\phi = \frac{2\pi}{\lambda} \Delta p = \frac{2\pi xd}{\lambda D}$
Step 5: Intensity Formula
$I = 4I_0 \cos^2\left(\frac{\phi}{2}\right)$
Step 6: Substitute $\phi/2$
$\frac{\phi}{2} = \frac{\pi xd}{\lambda D}$
$I = 4I_0 \cos^2\left(\frac{\pi xd}{\lambda D}\right)$
Final Answer: The final answer is $4I_0\ \cos^2\left(\frac{\pi d}{\lambda D}x\right)$