In the transistor circuit given in the figure, the emitter-base junction has a voltage drop of 0.7 V. A collector-emitter voltage of 14 V reverse biases the collector. Assuming the collector current to be the same as the emitter current, the value of \(R_B\) is ........... k\(\Omega\). 
Step 1: Write down given data.
\[
V_{CC} = 20\,V, V_{CE} = 14\,V, V_{BE} = 0.7\,V, \beta = 100
\]
\[
R_C = 2\,k\Omega, R_E = 1\,k\Omega
\]
Step 2: Apply KVL to the collector-emitter loop.
\[
V_{CC} = I_C R_C + V_{CE} + I_E R_E
\]
Since \(I_E \approx I_C\):
\[
20 = I_C(2 + 1) \times 10^3 + 14
\]
\[
I_C = \frac{20 - 14}{3000} = 2\,mA
\]
Step 3: Calculate base current.
\[
I_B = \frac{I_C}{\beta} = \frac{2 \times 10^{-3}}{100} = 20\,\mu A
\]
Step 4: Apply KVL to base circuit.
\[
V_{CC} = I_B R_B + V_{BE} + I_E R_E
\]
\[
20 = 20 \times 10^{-6} R_B + 0.7 + 2 \times 10^{-3} \times 10^3
\]
\[
20 = 20 \times 10^{-6} R_B + 0.7 + 2
\]
\[
R_B = \frac{17.3}{20 \times 10^{-6}} = 865 \times 10^3 = 865\,k\Omega
\]
Hence, approximately \(R_B = 865\,k\Omega\).
Step 5: Conclusion.
The required base resistor is \(R_B = 865\,k\Omega\).
