In the set of real numbers, the relation \( R \) defined by \( R = \{(a, b) : a \leq b^2 \} \) is:
Step 1: Check if the relation is reflexive: For reflexivity, \( a \leq a^2 \) must hold for all real numbers. This does not hold for all values of \( a \) (e.g., for \( a = -1 \), \( -1 \leq (-1)^2 \) is false), so the relation is not reflexive.
Step 2: Check if the relation is symmetric: The relation is not symmetric because if \( a \leq b^2 \), it does not imply that \( b \leq a^2 \) in general. For example, if \( a = 2 \) and \( b = 1 \), then \( 2 \leq 1^2 \) holds, but \( 1 \leq 2^2 \) does not hold.
Step 3: Check if the relation is transitive: The relation is transitive. If \( a \leq b^2 \) and \( b \leq c^2 \), then we can prove \( a \leq c^2 \) holds. Therefore, the correct answer is (A) not reflexive and symmetric, but transitive.
Let $ A = \{0, 1, 2, 3, 4, 5, 6\} $ and $ R_1 = \{(x, y): \max(x, y) \in \{3, 4 \}$. Consider the two statements:
Statement 1: Total number of elements in $ R_1 $ is 18.
Statement 2: $ R $ is symmetric but not reflexive and transitive.
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $