Observe the following reactions:
\( AB(g) + 25 H_2O(l) \rightarrow AB(H_2S{O_4}) \quad \Delta H = x \, {kJ/mol}^{-1} \)
\( AB(g) + 50 H_2O(l) \rightarrow AB(H_2SO_4) \quad \Delta H = y \, {kJ/mol}^{-1} \)
The enthalpy of dilution, \( \Delta H_{dil} \) in kJ/mol\(^{-1}\), is:
Kc for the reaction \[ A(g) \rightleftharpoons T(K) + B(g) \] is 39.0. In a closed one-litre flask, one mole of \( A(g) \) was heated to \( T(K) \). What are the concentrations of \( A(g) \) and \( B(g) \) (in mol L\(^{-1}\)) respectively at equilibrium?
The rate of a chemical reaction is defined as the change in concentration of any one of the reactants or products per unit time.
Consider the reaction A → B,
Rate of the reaction is given by,
Rate = −d[A]/ dt=+d[B]/ dt
Where, [A] → concentration of reactant A
[B] → concentration of product B
(-) A negative sign indicates a decrease in the concentration of A with time.
(+) A positive sign indicates an increase in the concentration of B with time.
There are certain factors that determine the rate of a reaction: