In the reported figure, there is a cyclic process ABCDA on a sample of 1 mol of a diatomic gas. The temperature of the gas during the process A $\rightarrow$ B and C $\rightarrow$ D are $T_1$ and $T_2$ ($T_1>T_2$) respectively. Choose the correct option out of the following for work done if processes BC and DA are adiabatic. 
A hot plate is placed in contact with a cold plate of a different thermal conductivity as shown in the figure. The initial temperature (at time $t = 0$) of the hot plate and cold plate are $T_h$ and $T_c$, respectively. Assume perfect contact between the plates. Which one of the following is an appropriate boundary condition at the surface $S$ for solving the unsteady state, one-dimensional heat conduction equations for the hot plate and cold plate for $t>0$?

The following data is given for a ternary \(ABC\) gas mixture at 12 MPa and 308 K:

\(y_i\): mole fraction of component \(i\) in the gas mixture
\(\hat{\phi}_i\): fugacity coefficient of component \(i\) in the gas mixture at 12 MPa and 308 K
The fugacity of the gas mixture is _________ MPa (rounded off to 3 decimal places).
The internal energy of air in $ 4 \, \text{m} \times 4 \, \text{m} \times 3 \, \text{m} $ sized room at 1 atmospheric pressure will be $ \times 10^6 \, \text{J} $. (Consider air as a diatomic molecule)
![Identify the products [A] and [B] respectively in the following reaction:](https://images.collegedunia.com/public/qa/images/content/2025_03_17/Screenshot_677f6f511742225539486.png)