\( 8 \, \text{mol} \)
\( 4 \, \text{mol} \)
Given reaction:
\( 2H_2 + O_2 \rightarrow 2H_2O \)
The balanced equation tells us that for every 2 moles of \( H_2 \) (hydrogen), 2 moles of \( H_2O \) (water) are produced.
From the balanced equation: \( 2 \, \text{mol} \, H_2 \rightarrow 2 \, \text{mol} \, H_2O \)
Therefore, if 4 moles of hydrogen (\( H_2 \)) react, the number of moles of water produced will be:
\[ \text{moles of } H_2O = \left( \frac{2 \, \text{mol} \, H_2O}{2 \, \text{mol} \, H_2} \right) \times 4 \, \text{mol} \, H_2 = 4 \, \text{mol} \, H_2O \]
The number of moles of water produced is \( \boxed{4 \, \text{mol}} \)
Fortification of food with iron is done using $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$. The mass in grams of the $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ required to achieve 12 ppm of iron in 150 kg of wheat is _______ (Nearest integer).} (Given : Molar mass of $\mathrm{Fe}, \mathrm{S}$ and O respectively are 56,32 and $16 \mathrm{~g} \mathrm{~mol}^{-1}$ )