The 12 musical notes are given as \( C, C^\#, D, D^\#, E, F, F^\#, G, G^\#, A, A^\#, B \). Frequency of each note is \( \sqrt[12]{2} \) times the frequency of the previous note. If the frequency of the note C is 130.8 Hz, then the ratio of frequencies of notes F# and C is:
The words given below are written using a particular font. Identify the digit that does not belong to the same font.
The figures, I, II, and III are parts of a sequence. Which one of the following options comes next in the sequence as IV?
The diagram below represents a road network connecting five towns, namely Meeren, Lannisport, Winterfell, Oldtown, and Gulltown. The maximum speed limits along any stretch of road are as shown in the diagram. The straight road that connects Meeren to Gulltown passes through Oldtown. Another straight road, running west to east, connecting Meeren to Winterfell, passes through Lannisport. Further, two straight roads, one from Lannisport to Oldtown and another from Winterfell to Gulltown, are perpendicular to the road joining Meeren to Winterfell, and run from south to north.
Consider a car always travelling at the maximum permissible speed, and always taking the shortest route. It takes 1 hour to reach Oldtown from Meeren, 2 hours to reach Gulltown from Oldtown, and 45 minutes to reach Winterfell from Gulltown. (For this problem, always consider the shortest route in terms of distance.)
Is there any good show __________ television tonight? Select the most appropriate option to complete the above sentence.
Consider a process with transfer function: \[ G_p = \frac{2e^{-s}}{(5s + 1)^2} \] A first-order plus dead time (FOPDT) model is to be fitted to the unit step process reaction curve (PRC) by applying the maximum slope method. Let \( \tau_m \) and \( \theta_m \) denote the time constant and dead time, respectively, of the fitted FOPDT model. The value of \( \frac{\tau_m}{\theta_m} \) is __________ (rounded off to 2 decimal places).
Given: For \( G = \frac{1}{(\tau s + 1)^2} \), the unit step output response is: \[ y(t) = 1 - \left(1 + \frac{t}{\tau}\right)e^{-t/\tau} \] The first and second derivatives of \( y(t) \) are: \[ \frac{dy(t)}{dt} = \frac{t}{\tau^2} e^{-t/\tau} \] \[ \frac{d^2y(t)}{dt^2} = \frac{1}{\tau^2} \left(1 - \frac{t}{\tau}\right) e^{-t/\tau} \]