The given question involves identifying the transitions in a hydrogen atom that correspond to specific series in the emission spectrum. Let's analyze the question and the options provided to determine the correct answer.
In the hydrogen spectrum, the emitted wavelengths are categorized into several series according to the final energy level of the electron:
Given the options, we are to identify the transitions \(A\), \(B\), and \(C\) as follows:
Therefore, the correct answer is: "The series limit of the Lyman series, third member of Balmer series, and second member of Paschen series."
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Which of the following best represents the temperature versus heat supplied graph for water, in the range of \(-20^\circ\text{C}\) to \(120^\circ\text{C}\)? 
Niels Bohr introduced the atomic Hydrogen model in 1913. He described it as a positively charged nucleus, comprised of protons and neutrons, surrounded by a negatively charged electron cloud. In the model, electrons orbit the nucleus in atomic shells. The atom is held together by electrostatic forces between the positive nucleus and negative surroundings.
Read More: Bohr's Model of Hydrogen Atom
A hydrogen-like atom consists of a tiny positively-charged nucleus and an electron revolving around the nucleus in a stable circular orbit.
If 'e,' 'm,' and 'v' be the charge, mass, and velocity of the electron respectively, 'r' be the radius of the orbit, and Z be the atomic number, the equation for the radii of the permitted orbits is given by r = n2 xr1, where 'n' is the principal quantum number, and r1 is the least allowed radius for a hydrogen atom, known as Bohr's radius having a value of 0.53 Å.
The Bohr Model was an important step in the development of atomic theory. However, it has several limitations.