Step 1: Understanding the Concept:
This problem involves balancing a nuclear reaction. In any nuclear reaction, two quantities must be conserved:
1. The total mass number (A), which is the superscript.
2. The total atomic number (Z), which is the subscript (representing charge).
Step 2: Detailed Explanation:
The given nuclear reaction is:
\[ ^1_0\text{n} + ^{235}_{92}\text{U} \rightarrow ^{140}_{54}\text{Xe} + ^b_a\text{Sr} + 2(^1_0\text{n}) \]
Conservation of Mass Number (Superscript):
The sum of the mass numbers on the left side must equal the sum on the right side.
Left side: \(1 + 235 = 236\)
Right side: \(140 + b + 2(1) = 142 + b\)
Equating the two sides:
\[ 236 = 142 + b \]
\[ b = 236 - 142 = 94 \]
Conservation of Atomic Number (Subscript):
The sum of the atomic numbers on the left side must equal the sum on the right side.
Left side: \(0 + 92 = 92\)
Right side: \(54 + a + 2(0) = 54 + a\)
Equating the two sides:
\[ 92 = 54 + a \]
\[ a = 92 - 54 = 38 \]
Step 3: Final Answer:
We have found that the atomic number \(a = 38\) and the mass number \(b = 94\). This corresponds to option (A).
Match List-I with List-II
\[\begin{array}{|l|l|} \hline \text{List-I (Soil component)} & \text{List-II (Definition)} \\ \hline (A)~\text{Azonal soils} & (I)~\text{An individual natural aggregate of soil particles.} \\ (B)~\text{Regoliths} & (II)~\text{Organisms living in the soil or ground} \\ (C)~\text{Ped} & (III)~\text{Soils have uniformity from the top-surface to the base, and do not have well-developed soil horizons.} \\ (D)~\text{Edaphons} & (IV)~\text{Zone of loose and unconsolidated weathered rock materials.} \\ \hline \end{array}\]
Choose the correct answer from the options given below:
Match List-I with List-II
\[\begin{array}{|l|l|} \hline \text{List I Content of humus} & \text{List II Percentage of contents} \\ \hline \text{(A) Carbon} & \text{(I) 35-40\%} \\ \hline \text{(B) Oxygen} & \text{(II) ~5\%} \\ \hline \text{(C) Hydrogen} & \text{(III) 55-60\%} \\ \hline \text{(D) Nitrogen} & \text{(IV) 15\%} \\ \hline \end{array}\]
Choose the correct answer from the options given below: