\(10^{18}\) fissions per second produce 300 MW of power in a nuclear power station. We need to find the additional number of fissions required per second to increase the power output to 360 MW.
First, we determine the power produced per fission:
\(\text{Power per fission} = \frac{\text{Total Power}}{\text{Number of fissions per second}}\)
\(\text{Power per fission} = \frac{300 \text{ MW}}{10^{18} \text{ fissions/s}}\)
\(\text{Power per fission} = 3 \times 10^{-16} \text{ MW/fission}\)
The additional power required is:
\(\Delta \text{Power} = 360 \text{ MW} - 300 \text{ MW} = 60 \text{ MW}\)
Now we can calculate the additional number of fissions needed per second to produce the additional power:
\(\Delta \text{Fissions} = \frac{\Delta \text{Power}}{\text{Power per fission}}\)
\(\Delta \text{Fissions} = \frac{60 \text{ MW}}{3 \times 10^{-16} \text{ MW/fission}}\)
\(\Delta \text{Fissions} = 2 \times 10^{17} \text{ fissions/s}\)
The additional number of fissions required per second to increase the power output to 360 MW is \(2 \times 10^{17}\).
Given:
Power at 1018 fissions/s = 300 MW
We are to find additional number of fissions per second required for 360 MW.
Step 1: Let number of fissions per second be proportional to power:
300 MW → 1018 fissions/s
1 MW → \( \frac{10^{18}}{300} \)
So, 360 MW → \( \frac{10^{18}}{300} \times 360 = 1.2 \times 10^{18} \) fissions/s
Step 2: Additional number of fissions required:
\[ 1.2 \times 10^{18} - 1.0 \times 10^{18} = 0.2 \times 10^{18} = 2 \times 10^{17} \]
Final Answer: \( 2 \times 10^{17} \)