Match List-I with List-II and choose the correct option:
\[ \begin{array}{|l|l|} \hline \textbf{LIST-I (Function)} & \textbf{LIST-II (Expansion)} \\ \hline A. \log(1-x) & I. 1 + \frac{1}{3} + \frac{1}{6} + \frac{3}{40} + \frac{15}{336} + \dots \\ \hline B. \sin^{-1} x & II. 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots \\ \hline C. \log 2 & III. x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} + \dots, -1 < x \le 1 \\ \hline D. \frac{\pi}{2} & IV. -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots, -1 \le x < 1 \\ \hline \end{array} \]
Two players \( A \) and \( B \) are playing a game. Player \( A \) has two available actions \( a_1 \) and \( a_2 \). Player \( B \) has two available actions \( b_1 \) and \( b_2 \). The payoff matrix arising from their actions is presented below:
Let \( p \) be the probability that player \( A \) plays action \( a_1 \) in the mixed strategy Nash equilibrium of the game.
Then the value of p is ________ (round off to one decimal place).
The installation cost (IC) of a solar power plant is INR 89,000. The plant shall be operational for 5 years. The recurring costs for maintenance of the solar plant per year is INR 5,000 but the benefits it creates including reduction in emissions amounts to INR 25,000 per year. These are the only costs and benefits associated with this project. The social discount rate (r) considered is 4% per year. The yearwise information is presented below.