Step 1: Express the given bottom arc \(Y\).
Let the radius of the bottom arc be \(R_Y\). Since \(Y\) subtends \(60^\circ\) and its length is \(10\pi\),
\[
\text{Arc length }Y = \frac{60^\circ}{360^\circ}\,2\pi R_Y
= \frac{\pi}{3}R_Y = 10\pi
\ \Rightarrow\ R_Y=30.
\]
Step 2: Use the common chord between the two arcs.
Both arcs share the same endpoints, hence the chord length is common.
For a central angle \(\theta\) and radius \(R\), chord \(c=2R\sin\!\left(\frac{\theta}{2}\right)\).
Bottom arc \(Y\) (\(60^\circ\)):
\[
c=2R_Y\sin 30^\circ = 2(30)..... \tfrac{1}{2} = 30.
\]
Step 3: Find the radius of the other arc \(X\) (subtending \(90^\circ\)).
Let its radius be \(R_X\). With the same chord,
\[
c=2R_X\sin 45^\circ = 2R_X..... \frac{\sqrt{2}}{2}=\sqrt{2}\,R_X=30
\ \Rightarrow\ R_X=\frac{30}{\sqrt{2}}=15\sqrt{2}.
\]
Step 4: Length of arc \(X\).
\[
\text{Arc }X=\frac{90^\circ}{360^\circ}\,2\pi R_X
=\frac{\pi}{2}\,R_X
=\frac{\pi}{2}\,(15\sqrt{2})
=\boxed{\frac{15\pi}{\sqrt{2}}}.
\]