Step 1: Use $AB=AC$.
$AB=AC \Rightarrow \triangle ABC$ is isosceles with base $BC$. Hence, $\angle ABC=\angle ACB$. Also, $B,C,D$ are collinear (from the figure), so directions $BC$ and $BD$ are the same. Thus $\angle ABD=\angle ABC$.
Step 2: Use $AC=CD$ on $\triangle ACD$.
Since $C$ lies on the straight line $BD$, the exterior angle at $C$ relative to $\triangle ABC$ is
\[
\angle ACD = 180^\circ-\angle ACB.
\]
With $AC=CD$, $\triangle ACD$ is isosceles, so $\angle CAD=\angle ADC$.
Step 3: Link with the given $\angle ADB=20^\circ$.
At $D$, line $DB$ is collinear with $DC$, hence $\angle ADB=\angle ADC=20^\circ$.
Therefore in $\triangle ACD$,
\[
\angle CAD=\angle ADC=20^\circ.
\]
Hence
\[
\angle ACD=180^\circ-\angle ACB=180^\circ- \angle ABC=180^\circ- \angle ABD.
\]
Step 4: Find the angles in $\triangle ABC$ and $\triangle ABD$.
In $\triangle ACD$, angle sum gives
\[
\angle CAD+\angle ADC+\angle ACD=20^\circ+20^\circ+\angle ACD=180^\circ \Rightarrow \angle ACD=140^\circ.
\]
So $\angle ACB=180^\circ-\angle ACD=40^\circ$, and by isosceles property $\angle ABC=40^\circ$.
Since $BD$ is the same direction as $BC$, $\angle ABD=\angle ABC=40^\circ$.
Step 5: Compute $\angle BAD$.
In $\triangle ABD$,
\[
\angle BAD = 180^\circ - \angle ABD - \angle ADB
= 180^\circ - 40^\circ - 20^\circ = 120^\circ.
\]
\[
\boxed{\angle BAD = 120^\circ}
\]