Question:

In the expansion of (1+x)n(1 + x)^n, nC1nC0+2nC2nC1+3nC3nC2++nnCnnCn1\frac{{}^nC_1}{{}^nC_0} + 2 \cdot \frac{{}^nC_2}{{}^nC_1} + 3 \cdot \frac{{}^nC_3}{{}^nC_2} + \dots + n \cdot \frac{{}^nC_n}{{}^nC_{n-1}} is equal to:

Updated On: Mar 29, 2025
  • n(n+1)2\frac{n(n+1)}{2}
  • n2\frac{n}{2}
  • n+12\frac{n+1}{2}
  • 3n(n+1)3n(n+1)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

1. Understand the problem:

We are given the expansion of (1+x)n (1 + x)^n and need to evaluate the sum:

C1C0+2C2C1+3C3C2++nCnCn1 \frac{C_1}{C_0} + 2 \frac{C_2}{C_1} + 3 \frac{C_3}{C_2} + \ldots + n \frac{C_n}{C_{n-1}}

where Ck=(nk) C_k = \binom{n}{k} , the binomial coefficients.

2. Express the general term:

Each term in the sum is of the form kCkCk1 k \frac{C_k}{C_{k-1}} . We can simplify this ratio:

CkCk1=(nk)(nk1)=nk+1k \frac{C_k}{C_{k-1}} = \frac{\binom{n}{k}}{\binom{n}{k-1}} = \frac{n - k + 1}{k}

This comes from the property of binomial coefficients: (nk)=n!k!(nk)! \binom{n}{k} = \frac{n!}{k!(n-k)!} .

3. Simplify the general term:

Substituting the simplified ratio into the general term:

kCkCk1=knk+1k=nk+1 k \frac{C_k}{C_{k-1}} = k \cdot \frac{n - k + 1}{k} = n - k + 1

4. Rewrite the sum:

The original sum now becomes:

k=1n(nk+1)=k=1n(n+1k) \sum_{k=1}^n (n - k + 1) = \sum_{k=1}^n (n + 1 - k)

5. Evaluate the sum:

This is an arithmetic series. Let m=n+1 m = n + 1 , then the sum is:

k=1n(mk)=k=1nmk=1nk=nmn(n+1)2 \sum_{k=1}^n (m - k) = \sum_{k=1}^n m - \sum_{k=1}^n k = n m - \frac{n(n+1)}{2}

Substituting back m=n+1 m = n + 1 :

n(n+1)n(n+1)2=n(n+1)2 n(n + 1) - \frac{n(n+1)}{2} = \frac{n(n+1)}{2}

6. Match the result to the options:

The simplified form n(n+1)2 \frac{n(n+1)}{2} corresponds to option (A).

Correct Answer: (A) n(n+1)2\frac{n(n+1)}{2}

Was this answer helpful?
0
0