To solve for the collector voltage \( V_C \) in the given transistor circuit, follow these steps:
First, calculate the base voltage \( V_B \) using the voltage divider rule: \(V_B = \frac{R_2}{R_1 + R_2} \cdot V_{CC} = \frac{50 \, \text{kΩ}}{100 \, \text{kΩ} + 50 \, \text{kΩ}} \times 15 \, \text{V} = 5 \, \text{V}\) Next, find the emitter voltage \( V_E \): Calculate the emitter current \( I_E \) using Ohm's Law: \(I_E = \frac{V_E}{R_E} = \frac{4.3 \, \text{V}}{3.3 \, \text{kΩ}} = 1.3 \, \text{mA}\) Assuming \( \beta = 100 \), calculate the collector current \( I_C \) (approximately equal to \( I_E \)): \(I_C \approx I_E = 1.3 \, \text{mA}\) Finally, calculate the collector voltage \( V_C \): \(V_C = V_{CC} - I_C \cdot R_C = 15 \, \text{V} - (1.3 \, \text{mA} \times 4.7 \, \text{kΩ}) = 8.9 \, \text{V}\) Thus, the collector voltage \( V_C \) is 8.9 V .