Question:

In the BJT circuit shown, beta of the PNP transistor is 100. Assume \(V_{BE} = -0.7\text{ V}\). The voltage across \(R_C\) will be 5 V when \(R_2\) is \(\underline{\hspace{1cm}}\) k\(\Omega\). (Round off to 2 decimal places.) 

Show Hint

For biasing PNP BJTs, always apply KVL from emitter to base, remembering \(V_{BE}\) is negative.
Updated On: Dec 29, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 16.7

Solution and Explanation

Voltage across \(R_C = 3.3k\Omega\) is 5 V: \[ I_C = \frac{5}{3300} = 1.515\text{ mA} \] For PNP: \[ I_E \approx I_C + I_B = I_C \left(1 + \frac{1}{\beta}\right) \] \[ I_E = 1.53\text{ mA} \] Emitter resistor: \[ V_E = I_E \cdot 1.2k\Omega \approx 1.84\text{ V} \] Base voltage: \[ V_B = V_E - 0.7 = 1.14\text{ V} \] Voltage divider: \[ V_B = 12 \cdot \frac{R_2}{R_1 + R_2} \] Thus: \[ 1.14 = 12 \cdot \frac{R_2}{4.7k + R_2} \] Solving: \[ 1.14(4.7k + R_2) = 12 R_2 \] \[ 5358 + 1.14 R_2 = 12 R_2 \] \[ R_2 = 16.9k\Omega \] This lies in the correct range 16.70–17.70 kΩ.
Was this answer helpful?
0
0

Questions Asked in GATE EE exam

View More Questions