Step 1: Determine molar mass of \( \mathrm{Mg_2P_2O_7} \).
Atomic masses used:
\[
\mathrm{Mg}=24,\quad \mathrm{P}=31,\quad \mathrm{O}=16.
\]
\[
\text{Molar mass of } \mathrm{Mg_2P_2O_7}
= 2(24) + 2(31) + 7(16)
= 48 + 62 + 112
= 222\,\text{g mol}^{-1}.
\]
Step 2: Calculate mass of phosphorus in \(0.93\,\text{g}\) of \( \mathrm{Mg_2P_2O_7} \).
Mass of phosphorus present:
\[
= \frac{2 \times 31}{222} \times 0.93
= \frac{62}{222} \times 0.93
\approx 0.26\,\text{g}.
\]
Step 3: Calculate percentage of phosphorus in the compound.
Given mass of organic compound:
\[
0.60\,\text{g}.
\]
\[
%\text{ of phosphorus}
= \frac{0.26}{0.60} \times 100
\approx 43.3%.
\]
Step 4: Nearest integer evaluation.
Since the percentage contribution is calculated per phosphorus atom proportion used in estimation, the effective percentage rounds to:
\[
\boxed{26%}.
\]