The given problem involves the calculation of the length of the weir using the formula for discharge over a rectangular weir:
\( Q = L \cdot H^{1.5} \cdot C_d \)
where \( Q \) is the discharge, \( L \) is the length of the weir, \( H \) is the head, and \( C_d \) is the coefficient of discharge. Substituting the values \( Q = 5 \, \text{m}^3/\text{s} \), \( H = 1 \, \text{m} \), and \( C_d = 1.84 \) (assumed standard value), the calculated length of the weir comes out to be approximately \( 2.49 \, \text{meters} \).
LIST I | LIST II |
A. Reynold’s Number | III. Inertia force to viscous force |
B. Mach Number | I. Inertia force to elastic force |
C. Froude’s Number | II. Inertia force to gravity force |
D. Weber’s Number | IV. Inertia force to surface tension force |
List I (State) | List II (Folk Theatre) |
---|---|
(A) Bengal | (I) Yakshagana |
(B) Gujarat | (II) Bhavai |
(C) Karnataka | (III) Jatra |
(D) Tamil Nadu | (IV) Terukkuttu |
List I (Country) | List II (President) |
---|---|
(A) Germany | (I) Xi Jinping |
(B) Palestine | (II) Luiz Inácio Lula da Silva |
(C) China | (III) Frank-Walter Steinmeier |
(D) Brazil | (IV) Mahmoud Abbas |
List I (Book) | List II (Author) |
---|---|
(A) Alvin Toffler | (I) The Ice Candy Man |
(B) Bapsi Sidhwa | (II) Good Earth |
(C) Pearl S. Buck | (III) Third Wave |
(D) V.S. Naipaul | (IV) An Area of Darkness |