We need to choose 6 economists to stay in the triple rooms, which can be done in:
\(\binom{10}{6}\) ways.
After selecting 6 economists, we divide them into pairs for the 2 double rooms. The number of ways to divide 6 economists into pairs is:
\(\frac{6!}{2^3 \cdot 3!}\)
Hence, the total number of ways is:
\(\binom{10}{6} \cdot \frac{6!}{2^3 \cdot 3!} = 210\)
Thus, the correct answer is (a).
Match Fibre with Application.\[\begin{array}{|l|l|} \hline \textbf{LIST I} & \textbf{LIST II} \\ \textbf{Fibre} & \textbf{Application} \\ \hline \hline \text{A. Silk fibre} & \text{I. Fire retardant} \\ \hline \text{B. Wool fibre} & \text{II. Directional lustre} \\ \hline \text{C. Nomex fibre} & \text{III. Bulletproof} \\ \hline \text{D. Kevlar fibre} & \text{IV. Thermal insulation} \\ \hline \end{array}\]