Step 1: The transformation of a second-rank contravariant tensor under a Lorentz transformation is given by: \[ A'_{\mu\nu} = \Lambda_{\mu}^{\ \alpha} \Lambda_{\nu}^{\ \beta} A_{\alpha\beta}, \] where \( \Lambda_{\mu}^{\ \alpha} \) is the Lorentz transformation matrix.
Step 2: For the diagonal components \( A^{tt} \) and \( A^{xx} \), we use the Lorentz transformation for each component: \[ A'^{tt} = \gamma^2 A^{tt} + \gamma^2 v^2 A^{xx}, \] \[ A'^{xx} = \gamma^2 v^2 A^{tt} + \gamma^2 A^{xx}. \] Substituting \( A^{tt} = P \) and \( A^{xx} = Q \), we get: \[ A'^{tt} = \gamma^2 P + \gamma^2 v^2 Q, \] \[ A'^{xx} = \gamma^2 v^2 P + \gamma^2 Q. \]