In the Bohr model of the hydrogen atom, the electron in the \( n \)-th orbit has the following properties:
1. Angular Momentum: According to the Bohr model, the angular momentum \( L \) of the electron in the \( n \)-th orbit is quantized and given by:
\[
L = n \hbar
\]
where \( n \) is the principal quantum number and \( \hbar = \frac{h}{2 \pi} \) is the reduced Planck's constant.
For \( n = 2 \) (second orbit), we have:
\[
L = 2 \hbar
\]
Using the value of \( \hbar = 1.055 \times 10^{-34} \, \text{J·s} \), we get:
\[
L = 2 \times 1.055 \times 10^{-34} \, \text{J·s} = 2.11 \times 10^{-34} \, \text{J·s}
\]
2. Radius of the Orbit: The radius \( r_n \) of the \( n \)-th orbit is given by the formula:
\[
r_n = n^2 r_1
\]
where \( r_1 \) is the radius of the first orbit.
Given \( r_1 = 0.5 \, \text{\AA} = 0.5 \times 10^{-10} \, \text{m} \) and \( n = 2 \), the radius of the second orbit is:
\[
r_2 = 2^2 \times 0.5 \times 10^{-10} \, \text{m} = 4 \times 0.5 \times 10^{-10} \, \text{m} = 2 \times 10^{-10} \, \text{m}
\]
3. Kinetic Energy of the Electron: The kinetic energy \( K \) of the electron in the \( n \)-th orbit is related to the total energy \( E \) by:
\[
K = \frac{1}{2} m v^2
\]
where \( m \) is the mass of the electron and \( v \) is the speed of the electron.
The total energy \( E \) of the electron in the \( n \)-th orbit is:
\[
E = -\frac{k e^2}{2r_n}
\]
where \( k = 9 \times 10^9 \, \text{N·m}^2/\text{C}^2 \) and \( e = 1.6 \times 10^{-19} \, \text{C} \) is the charge of the electron.
The kinetic energy is the negative of half of the total energy:
\[
K = -\frac{E}{2} = \frac{k e^2}{4 r_n}
\]
Substituting \( r_n = 2 \times 10^{-10} \, \text{m} \) into the formula, we get:
\[
K = \frac{9 \times 10^9 \times (1.6 \times 10^{-19})^2}{4 \times 2 \times 10^{-10}} \, \text{J}
\]
After calculating, we find:
\[
K \approx 1.15 \times 10^{-18} \, \text{J}
\]
Thus, the answers are:
\begin{enumerate}
\item Angular momentum: \( L = 2.11 \times 10^{-34} \, \text{J·s} \)
\item Radius of the orbit: \( r_2 = 2 \times 10^{-10} \, \text{m} \)
\item Kinetic energy of the electron: \( K \approx 1.15 \times 10^{-18} \, \text{J} \)
\end{enumerate}