In an FCC crystal with lattice parameter \( a \), consider the reaction of two leading partial dislocations, AB and CD, at the line of intersection of their slip planes \( (111) \), respectively, as shown in the figure below. Dislocations AB and CD, have Burgers vectors \( \mathbf{b_1} \) and \( \mathbf{b_2} \), respectively, as given in the figure. Which one of the following options for the slip plane and the Burgers vector of the resulting dislocation is correct?
Suppose that 2 is an eigenvalue of the matrix
Then the value of \( \alpha \) is equal to (Answer in integer):
In the figures given below, L and H indicate low and high pressure centers, respectively; PGF, CoF and CeF indicate Pressure Gradient Force, Coriolis Force and Centrifugal Force, respectively; \( V \) is Velocity. [The arrows indicate only the directions but not the magnitudes of the forces and velocity.]
Which of the following is/are the correct representation(s) of the directions of various forces and velocity in the gradient wind balance in the northern hemisphere?
Which of the following is the correct form of the mass divergence form of the continuity equation for a compressible fluid? [In the given equations, \( \rho \) is the density and \( \nabla \) the three-dimensional velocity vector of the fluid.]
[(i)] $\displaystyle \frac{\partial \rho}{\partial t} + \nabla \times (\rho \mathbf{v}) = 0$
[(ii)] $\displaystyle \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$
[(iii)] $\displaystyle \frac{\partial \mathbf{v}}{\partial t} + \rho \cdot \nabla \mathbf{v} = 0$
[(iv)] $\displaystyle \frac{\partial \rho}{\partial t} + \mathbf{v} \cdot \nabla \rho = 0$