To determine the temperature coefficient of resistance, we use the formula:
\( \alpha = \frac{R_2 - R_1}{R_1 (T_2 - T_1)} \) where:
- \( R_1 = 4 \Omega \) is the resistance at \( t_1 = 0^\circ \text{C} \),
- \( R_2 = 6 \Omega \) is the resistance at \( t_2 = 100^\circ \text{C} \),
- \( T_1 = 0^\circ \text{C} \) and \( T_2 = 100^\circ \text{C} \).
Now substitute the values into the formula:\( \alpha = \frac{6 - 4}{4 \times (100 - 0)} = \frac{2}{400} = 0.005°C^{-1} \)
A battery of emf \( E \) and internal resistance \( r \) is connected to a rheostat. When a current of 2A is drawn from the battery, the potential difference across the rheostat is 5V. The potential difference becomes 4V when a current of 4A is drawn from the battery. Calculate the value of \( E \) and \( r \).