Given:
Consumption function: \( C = 200 + 0.75Y \)
Investment (I) = ₹ 4,000 crore
Step 1: Find Equilibrium Income
At equilibrium,
\[
Y = C + I = (200 + 0.75Y) + 4000
\]
\[
Y = 200 + 0.75Y + 4000 = 4200 + 0.75Y
\]
\[
Y - 0.75Y = 4200 \Rightarrow 0.25Y = 4200
\]
\[
\Rightarrow Y = \frac{4200}{0.25} = ₹ 16,800 \, \text{crore}
\]
Step 2: Total Consumption at Equilibrium Income
\[
C = 200 + 0.75 \times 16800 = 200 + 12600 = ₹ 12,800 \, \text{crore}
\]
Therefore, equilibrium income = ₹ 16,800 crore and total consumption = ₹ 12,800 crore.