To understand this question, we need to look at the redox reaction between permanganate ion \( \text{MnO}_4^- \) and iodide ion \( \text{I}^- \) in an alkaline medium.
The permanganate ion acts as a strong oxidizing agent. In an alkaline medium, it can oxidize iodide ions to iodate ions according to the balanced chemical equation:
\[2 \text{MnO}_4^- + \text{I}^- + \text{H}_2\text{O} \rightarrow 2 \text{MnO}_2 + \text{IO}_3^- + 2 \text{OH}^-\]This reaction shows that in an alkaline medium, \( \text{I}^- \) is oxidized to \( \text{IO}_3^- \) (iodate ion) when reacted with permanganate ion. The presence of hydroxide ions from the alkaline medium helps stabilize the formation of manganese dioxide (\( \text{MnO}_2 \)).
Let's analyze the options:
Thus, the correct answer is that in an alkaline medium, \( \text{MnO}_4^- \) oxidizes \( \text{I}^- \) to \( \text{IO}_3^- \).
Given below are two statements:
Statement (I): The first ionization energy of Pb is greater than that of Sn.
Statement (II): The first ionization energy of Ge is greater than that of Si.
In light of the above statements, choose the correct answer from the options given below:
The product (A) formed in the following reaction sequence is:

\[ \begin{array}{|c|c|} \hline \textbf{LIST-I (Redox Reaction)} & \textbf{LIST-II (Type of Redox Reaction)} \\ \hline A. \, CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l) & I. \, \text{Disproportionation reaction} \\ B. \, 2NaH(s) \rightarrow 2Na(s) + H_2(g) & II. \, \text{Combination reaction} \\ C. \, V_2O_5(s) + 5Ca(s) \rightarrow 2V(s) + 5CaO(s) & III. \, \text{Decomposition reaction} \\ D. \, 2H_2O(aq) \rightarrow 2H_2(g) + O_2(g) & IV. \, \text{Displacement reaction} \\ \hline \end{array} \]