To understand this question, we need to look at the redox reaction between permanganate ion \( \text{MnO}_4^- \) and iodide ion \( \text{I}^- \) in an alkaline medium.
The permanganate ion acts as a strong oxidizing agent. In an alkaline medium, it can oxidize iodide ions to iodate ions according to the balanced chemical equation:
\[2 \text{MnO}_4^- + \text{I}^- + \text{H}_2\text{O} \rightarrow 2 \text{MnO}_2 + \text{IO}_3^- + 2 \text{OH}^-\]This reaction shows that in an alkaline medium, \( \text{I}^- \) is oxidized to \( \text{IO}_3^- \) (iodate ion) when reacted with permanganate ion. The presence of hydroxide ions from the alkaline medium helps stabilize the formation of manganese dioxide (\( \text{MnO}_2 \)).
Let's analyze the options:
Thus, the correct answer is that in an alkaline medium, \( \text{MnO}_4^- \) oxidizes \( \text{I}^- \) to \( \text{IO}_3^- \).
Given below are two statements:
Statement (I): The first ionization energy of Pb is greater than that of Sn.
Statement (II): The first ionization energy of Ge is greater than that of Si.
In light of the above statements, choose the correct answer from the options given below:
The product (A) formed in the following reaction sequence is:

Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals:
Designate whether each of the following compounds is aromatic or not aromatic.
