Step 1: Use relation between roots and coefficients.
If \(b\) and \(c\) are roots of:
\[
x^2-61x+820=0
\]
Then:
\[
b+c = 61,\quad bc = 820
\]
Step 2: Find \(\cos A\).
\[
A=\tan^{-1}\left(\frac{4}{3}\right)
\Rightarrow \tan A = \frac{4}{3}
\]
Take right triangle with opposite = 4, adjacent = 3, hypotenuse = 5.
So:
\[
\cos A = \frac{3}{5}
\]
Step 3: Apply cosine rule.
\[
a^2 = b^2 + c^2 - 2bc\cos A
\]
Step 4: Compute \(b^2+c^2\).
\[
b^2+c^2 = (b+c)^2 - 2bc
= 61^2 - 2(820)
= 3721 - 1640
= 2081
\]
Step 5: Substitute values.
\[
a^2 = 2081 - 2(820)\left(\frac{3}{5}\right)
\]
\[
= 2081 - 1640\left(\frac{3}{5}\right)
= 2081 - 984
= 1097
\]
Final Answer:
\[
\boxed{1097}
\]