Step 1: Recognize standard triangle identity.
Expression resembles form:
\[
\frac{(b+c-a)(c+a-b)(a+b-c)(a+b+c)}{16b^2c^2}
\]
which is known to equal \(\sin^2A\). Step 2: Use formula for \(\sin A\) in terms of sides.
\[
\sin A = \frac{2\Delta}{bc}
\Rightarrow \sin^2A=\frac{4\Delta^2}{b^2c^2}
\] Step 3: Use Heron’s formula.
\[
16\Delta^2=(a+b+c)(a+b-c)(b+c-a)(c+a-b)
\]
So:
\[
\sin^2A=\frac{(a+b+c)(a+b-c)(b+c-a)(c+a-b)}{4b^2c^2}
\] Step 4: Match with given expression.
Hence expression equals \(\sin^2A\). Final Answer:
\[
\boxed{\sin^2A}
\]